Marketing Analytics
Automating customer onboarding with Numbers Station
A media consulting firm was having challenges onboarding new customers as their business started to grow. The data team used Numbers Station to automate customer data onboarding processes. For every new customer, data analysts at the media company were able to clean and map the data to their internal schema 20x faster compared to their previous manual approach.
Problem
A media consulting firm providing services for marketing and advertising strategy was having challenges onboarding new customers as their business started to grow. The challenge they were facing was caused by inconsistent data schemas from different customers, requiring their data team to build bespoke pipelines to map customers' data schemas to their internal schema. Their approach was not scaling fast enough as their number of customers started to grow and they were looking for an automated solution to onboard customers faster.
Goal
Accelerate customer onboarding by automating data wrangling workloads and reduce custom manual work.
Challenge
The data from new customers required a significant amount of manual work and customization. This is because customers’ marketing data came from a variety of systems like ad platforms, web analytics tools, and more. This data often had inconsistent schemas, and contained errors or missing values. This required writing custom regular expressions and rule-based logic to clean and normalize the data for each new customer. Ultimately, this manual solution was not scalable as the volume of customers to onboard started to grow.
Solution
Using Numbers Station’s self-service data intelligence suite, the data team was able to automatically generate cleaning logic from natural language instructions, and use AI for more advanced transformations like categorizing campaigns based on their descriptions. Using Numbers Station’s dbt integration, the data team then deployed all customer onboarding pipelines in their warehouse with automatic updates on a monthly cadence for all their customers.
Results
The data team was able to drastically reduce the time they spent with each new customer, from 2 weeks of work to four hours on average. This allowed the media company to onboard more customers, and spend time on providing strategic insights rather than writing complex cleaning and normalization logic.
More marketing analytics use cases
Use AI to categorize campaign metadata (e.g. name, description). Build accurate customer engagement reports to understand which strategies work best with your customers.
Enrich your internal marketing data with third party data (e.g. demographics, firmographics, etc) to get a complete understanding of your prospects and their preferences.
Understand how the community reacts to your social media media campaigns by analyzing common topics, trends and sentiments in social media data (e.g. tweets).